Выявление иммуноглобулинов класса G (IgG) к Helicobacter pylori в сыворотке крови, используемое для диагностики антрального и фундального гастрита, язвы желудка и двенадцатиперстной кишки, а также для контроля за их лечением.
Синонимы русские
Хеликобактер, иммуноглобулины класса G, IgG-антитела.
Синонимы английские
Helicobacter pylori Antibody, IgG; Anti-Helicobacter pylori antibody, IgG (quantitative).
Метод исследования
Твердофазный хемилюминесцентный иммуноферментный анализ («сэндвич»-метод).
Какой биоматериал можно использовать для исследования?
Венозную кровь.
Как правильно подготовиться к исследованию?
- Не курить в течение 30 минут до исследования.
Общая информация об исследовании
Инфицирование H. pylori сопровождается развитием местного и системного иммунного ответа. Вслед за транзиторным увеличением титра иммуноглобулинов класса М (IgM) следует продолжительное и значительное нарастание IgG-, а также IgA-антител в сыворотке крови. Определение концентрации иммуноглобулинов (серологическое исследование) применяют в диагностике хеликобактериоза. IgG обнаруживаются в 95-100 % случаев инфицирования H. pylori, IgA – в 68-80 %, а IgM – лишь в 15-20 %. Поэтому для подтверждения инфицирования H. pylori определяют концентрацию IgG в сыворотке крови. Этот анализ имеет ряд преимуществ перед другими лабораторными методами выявления хеликобактера.
Определение IgG в крови не требует эндоскопического исследования, поэтому является более безопасным способом диагностики. Так как чувствительность теста сопоставима с чувствительностью большинства инвазивных анализов (быстрый уреазный тест, гистологическое исследование), он оказывается особенно полезным, когда выполнение эндоскопии не планируется. Следует, однако, отметить, что тест не выявляет непосредственно микроорганизм и зависит от особенностей иммунного ответа пациента. Так, например, иммунный ответ пожилых людей характеризуется пониженной выработкой специфических антител (любых, в том числе к H. pylori), что необходимо учитывать, если получен отрицательный результат анализа при клинических признаках диспепсии. Кроме того, иммунный ответ подавляется при приеме некоторых цитостатических препаратов.
Анализ на IgG может быть с максимальным успехом применен для диагностики первичного инфицирования H. pylori (например, при обследовании молодого пациента с впервые возникшими признаками диспепсии). В этой ситуации высокий титр IgG позволяет заподозрить активную инфекцию. Также положительный результат анализа у пациента (с признаками диспепсии в анамнезе или без них), не получавшего терапию, будет указывать на хеликобактериоз.
Интерпретация положительного результата анализа в случае, если была проведена терапия (или если антибиотики, обладающие активностью против H. pylori, были применены в других целях), имеет некоторые особенности. Уровень IgG остается высоким в течение длительного времени после полной гибели микроорганизма (около половины пациентов, вылечившихся от H. pylori, будут иметь высокие титры IgG еще 1-1,5 года). В результате положительный результат анализа у пациента, принимавшего антибиотики, не позволяет дифференцировать активную инфекцию и инфекцию в анамнезе и требует проведения дополнительных лабораторных исследований.
По этой же причине исследование на IgG не является основным тестом для диагностики эффективности терапии. Однако оно может быть применено с этой целью, если титр антител на момент начала болезни сравнивается с титром после окончания лечения. Считается, что снижение концентрации IgG на 20-25 % в течение 6 месяцев косвенно указывает на гибель микроорганизма. В то же время, если эта концентрация не снижается, это не означает неэффективность терапии. Отсутствие IgG-антител при повторном анализе свидетельствует об успешности лечения и избавлении от микроорганизма.
Количество IgG к H. pylori также является одним из компонентов, по которому судят о состоянии слизистой оболочки желудка (это так называемая серологическая биопсия).
Для чего используется исследование?
Для диагностики заболеваний, вызванных H. pylori, и контроля за их лечением:
- антрального и фундального гастрита;
- язвы двенадцатиперстной кишки или желудка.
Когда назначается исследование?
- При обследовании пациента с впервые возникшими признаками диспепсии (первичное инфицирование H. pylori), особенно если эндоскопия не планируется.
- При обследовании пациента с указанием на диспепсию в анамнезе, если не назначалась терапия H. pylori (или если антибиотики, активные против H. pylori, не использовались по другому поводу).
- При первичной диагностике хеликобактериоза и через 6 месяцев после окончания курса его терапии.
Что означают результаты?
Референсные значения
Результат: отрицательный.
Концентрация: 0 — 0,9.
Причины положительного результата
- Активная инфекция H. pylori:
a) снижение титра антител на 20-25 % в течение 6 месяцев после окончания антибактериальной терапии косвенно указывает на гибель микроорганизма;
b) отсутствие тенденции к снижению IgG не говорит о неэффективности терапии.
- инфекция H. pylori в анамнезе.
Причины отрицательного результата:
- отсутствие инфекции H. pylori;
- гибель микроорганизма после курса антибиотикотерапии.
Что может влиять на результат?
Иммунный ответ пожилых людей, а также пациентов, получающих иммуносупрессивную терапию, характеризуется пониженной выработкой специфических антител, в том числе к H. pylori, что приводит к большему числу ложноотрицательных реакций теста в этой группе пациентов.
Лечение
Лечение направлено на достижение ремиссии заболевания и предупреждение дальнейшего прогрессирования атрофии и развития осложнений
- Антацидные препараты (для нормализации кислотности желудочного сока).
- Гастропротекторы (препараты, защищающие (обволакивающие) слизистую оболочку).
- Противомикробные препараты.
- Прокинетические препараты.
- Индивидуальный подбор диеты.
Внимание!
Подбор лекарственной терапии должен производиться индивидуально с учетом тяжести течения заболевания, наличия сопутствующих заболеваний, возраста пациента и риска возможных побочных эффектов.
Просим Вас не заниматься самолечением на основании данных сети Интернет!
Телефон отделения:
+7 (495) 695-56-95
Клеточные биосенсоры. Удивительные факты из жизни некоторых бактерий
Любая бактериальная клетка — это удивительная мини-фабрика, которая, исходя из своей природной ниши, выработала внутри себя ряд механизмов выживания и адаптации, основой которых являются гены, белки (продукты экспрессии генов) и промоторы, управляющие всеми этими процессами. Промотор — это уникальная последовательность перед геном, которую «узнает» фермент полимераза, взаимодействует с ней и запускает каскад таких процессов, как транскрипция (наработка РНК) и трансляция (наработка белкового продукта) этого гена. Все это называется экспрессией гена, а промотор регулирует эту экспрессию и ее уровень (рис. 2).
Рисунок 2. Схематическое изображение процесса экспрессии гена. Экспрессия гена регулируется промотором. ДНК-последовательность гена служит в качестве матрицы для процесса транскрипции (наработка РНК с ДНК-последовательности гена) и последующей трансляции (образование белкового продукта).
рисунок автора статьи
Есть гены, чьи продукты нужны клетке всегда, поэтому они экспрессируются на постоянном уровне (их называют генами «домашнего хозяйства»). А есть гены, чья экспрессия нужна только в некоторых случаях, например, для защиты клетки от неблагоприятного внешнего воздействия. Такое воздействие называют индуктором промотора. И у одного промотора таких индукторов может быть сразу несколько. Иногда изменение количества белкового продукта в клетке в ответ на индуктор можно легко зарегистрировать, например визуально. Именно это характерно для природных люминесцентных бактерий, таких как Vibrio, Photobacterium, Shewanella (Altermonas) и Photorhabdus (Xenorhabdus), встречающихся, главным образом, в море [8]. В их клетках с помощью целого оперона (несколько объединенных генов), называемого lux-опероном, закодирован белок-фермент люцифераза и его вспомогательные белки, которые, управляя сложным каскадом реакций, инициируют свечение клетки голубовато-зеленым светом — люминесценцию [8]. За регуляцию этого lux-оперона в клетке отвечают стресс-чувствительные промоторы. Соответственно, факторы, воздействующие на эти промоторы, изменяют экспрессию lux-оперона и, как следствие, уровень свечения клетки. А поскольку у хорошей хозяйки все в хозяйстве сгодится, то ученые решили, что негоже таким бактериям просто так пропадать на дне морском и сделали их частью биологического сенсора [9].
Биосенсор — это устройство, в котором чувствительный слой представлен биологическим объектом: клеткой (клеточный биосенсор), ферментом (ферментный биосенсор), антителом (иммуносенсор) или нуклеиновой кислотой (сенсоры на основе ДНК-аптамеров). Этот чувствительный слой реагирует на присутствие определенного компонента в анализируемой смеси и генерирует сигнал (например, в случае люминесцентных бактерий, свечение), пропорциональный количеству этого компонента или факту его наличия/отсутствия [10]. Для каждого вида чувствительного элемента есть свои преимущества и ограничения. Но сенсоры на основе живых клеток значительно стабильнее и дешевле. К тому же уникальная комбинация всех клеточных компонентов позволяет создавать систему, которую невозможно воспроизвести, используя отдельные составляющие. Поэтому уже сейчас в экологии для определения токсичности водных сред на основе люминесцентных бактерий активно используются такие биосенсорные системы, как Microtox в США, LUMItox в Великобритании, ToxAlert в Германии и BioTox в Финляндия [9], [10]. Это клеточные биосенсоры на основе нативных (то есть естественных) бактериальных клеток.
Но что делать, если у бактерии есть специфические промоторы, которые чувствительны к специфическим факторам и были бы полезны в биосенсоре, но продукт экспрессии этих генов не удобно регистрировать? Ну не светятся они в обычной жизни. Не хочешь? Поможем.
Именно здесь на сцену выходит великая и ужасная генная инженерия, благодаря которой, кстати, человечество получило устойчивую к засухе пшеницу и холодоустойчивые томаты, более крупный картофель и устойчивые к паразитам яблоки и бананы [11]. Как? Если кратко, то с помощью генно-инженерных методов мы можем внести в клетку дополнительные гены или целые гибридные последовательности таким образом, чтобы клетка производила нужные нам белки в большем объеме или приобретала благодаря им новые качества [12]. Кстати, именно генномодифицированные бактерии производят для нас в огромных масштабах гормоны инсулин и эритропоэтин, а также различные витамины и антибиотики, которые многим людям просто жизненно необходимы [12].
На сегодняшний день вариантов и подходов к модификации растений и микроорганизмов в генной инженерии существует очень много. Но в нашем случае, для получения клеточного биосенсора на основе генетически модифицированных бактерий, наиболее простым подходом является использование репортерной конструкции (рис. 3) [7], [13–16]. Чаще всего репортерная конструкция представляет собой кольцевую ДНК (плазмиду), которая может быть внесена в клетку и существовать в ней автономно. В состав такой плазмиды мы можем поместить выбранный нами чувствительный к специфическим воздействиям промотор данного микроорганизма таким образом, чтобы он регулировал экспрессию выбранного нами гена-репортера (это ген, продукт которого легко регистрируется — например, зеленая или красная флуоресценция или люминесценция).
Рисунок 3. Упрощенная схема принципа действия биосенсора на основе модифицированных клеток с использованием репортерной конструкции. В составе конструкции чувствительный промотор объединен с геном-репортером, контролируя его экспрессию. Конструкция внесена в клетки путем клеточной трансформации. В результате внешнего воздействия на такие модифицированные конструкцией клетки происходит активация стресс-чувствительного промотора, экспрессия гена-репортера и последующая продукция репортерного белка.
[7], рисунок изменен и адаптирован
Итак, резюмируем. Мы выбираем интересный микроорганизм с необычным, специфическим промотором, чувствительным к определенному веществу, которое нам хотелось бы детектировать. Затем мы «собираем» для него репортерную конструкцию, которая содержит ген-репортер под контролем стресс-чувствительного промотора и вносим эту конструкцию в клетки (генетически модифицируем наш микроорганизм). Если в среде оказывается вещество-индуктор, к которому чувствителен наш промотор, — промотор активирует экспрессию гена-репортера, в клетке происходит продукция репортерного белка, и мы видим клеточный сигнал — вуаля! Мы детектируем данное вещество в среде благодаря тому, что модифицированные клетки меняют свою флуоресценцию/люминесценцию в ответ на вещество-индуктор. На основе таких модифицированных микроорганизмов уже получен ряд биосенсоров, с помощью которых успешно детектируют тяжелые металлы в среде и почве, токсины в подземных водах, ядовитые соединения в воде и антибиотики в почве и в продуктах питания.
Наиболее популярным микроорганизмом для модификации и использования в таких биосенсорах является условно патогенная бактерия E. coli или кишечная палочка [17]. Однако потребности человечества в новых специфических системах детекции и новых микроорганизмах для этих целей с каждым днем только растут. Каждый микроорганизм уникален, и чем необычнее его биологическая ниша и способы адаптации к ней, тем специфичнее его промоторы. Вот так мы и решили заставить нашего грозного патогенного малыша H. pylori приносить пользу, генетически модифицировав его с помощью репортерной конструкции и сделав его частью клеточного биосенсора.