Как переваривается пища в организме?
Пищеварение
— это химический процесс, в ходе которого пища сначала смешивается с желудочным соком, а затем проходит по желудочно-кишечному тракту, постепенно распадаясь на составляющие. Пищеварение начинается даже не в желудке, а во рту, ведь в процессе пережёвывания человек уже измельчает пищу и частично смешивает её со слюной, чтобы облегчить глотание. С этого момента уже можно говорить о начале процесса пищеварение, которое закончится только в тонком кишечнике. Это не такой уж короткий путь.
Желудочно-кишечный тракт состоит из нескольких участков. Желудок и кишечник
— это большие полые органы с мышечным слоем, который позволяет приводить в движение их стенки, чтобы пища и жидкость могли продвигаться через пищеварительную систему. Без такой помощи процесс пищеварения был бы невозможен, пища бы просто застаивалась в желудке. Процесс сокращения органов ЖКТ называют
перистальтикой
и сравнивает с волной, которая проходит вдоль пищеварительного тракта и помогает пище и жидкости медленно продвигаться вперёд. Если пища была предварительно тщательно пережёвана и жидкости было достаточно, то продвигать её по пищеварительному тракту будет проще.
О диагностике нарушений кишечного всасывания
Повышенное газообразование — симптом нарушения кишечного всасывания.
Как и множество других заболеваний, синдром мальабсорбции можно диагностировать по некоторым характерным симптомам:
- частая диарея, сопровождающаяся обильным выделением слизи и зловонием;
- повышенное газообразование;
- ощущения дискомфорта, тяжести или даже спазмов в желудке, многократно усиливающееся после каждого приема пищи;
- быстрая утомляемость;
- явное истощение, обычно сопровождающееся заметной потерей веса;
- нездоровая бледность и прочие клинические признаки анемии;
- ночная слепота (как правило, подобное нарушение развивается в условиях нехватки организму витаминов);
- повышенная чувствительность кожи к повреждениям, выражающаяся в моментальном появлении синяков практически от любого механического воздействия, являющееся закономерным результатом недостатка в организме витамина К;
- характерная ломота в костях и боль в мышцах, говорящие о дефиците кальция.
При обнаружении у себя нескольких из вышеперечисленных тревожных признаков, пациенту следует немедленно обратиться к хорошему гастроэнтерологу для уточнения диагноза.
Специалист соберет анамнез заболевания и назначит все необходимые дополнительные обследования. Так, сегодня для диагностики синдрома нарушения кишечного всасывания широко используются следующие исследовательские методы:
- анализ крови, определяющий дефицит в организме тех или иных полезных веществ, а также подтверждающий (или опровергающий) наличие у пациента анемии;
- анализ кала, выявляющий степень усвояемости организмом получаемых с пищей полезных жиров;
- анализ текущего состояния микрофлоры кишечника, получаемый посредством мазка;
- проба выдыхаемого пациентом воздуха, подтверждающая или опровергающая наличие у обследуемого непереносимости лактозы, а также позволяющая определить примерное количество бактерий в кишечнике больного;
- эндоскопия, применяемая, в первую очередь, с целью получения биологического материала для другого исследования – биопсии тканей кишечника;
- рентген кишечника (обычно – с применением бариевого раствора, необходимого для получения снимков более высокой четкости).
Как работает пищеварительная система?
Как мы уже сказали, пищеварение начинается в полости рта
, где пища измельчается в процессе жевания и смешивается со слюной. Слюна не так агрессивна, как желудочный сок, но и она содержит
определённые ферменты
, которые запускают процесс пищеварения и способны расщеплять крахмал. Когда человек проглатывает пищу, она попадает в
пищевод
, этот участок находится между глоткой и желудком. Чтобы проглотить пищу, человек должен приложить некоторые усилия, потому что на стыке пищевода и желудка находятся кольцевые мышцы, своеобразный клапан, роль которого выполняет
нижний сфинктер пищевода
. Он открывается при давлении поступившей пищи и пропускает её в желудок.
В желудке происходит сразу три важных процесса
:
- хранение пищи;
- смешивание пищи с желудочным соком;
- транспортировка пищи в тонкий кишечник.
Когда человек ест, желудок работает преимущественно как “мешок” или накопитель
, куда попадает вся съеденная пища и выпитые жидкости. Чтобы принять весь этот груз, желудок должен уметь увеличиваться в размере, в этом ему помогают мышцы, которые находятся в верхней части желудка. В процессе потребления человеком пищи они расслабляются, что позволяет стенкам желудка растягиваться.
Смешивание пищи с желудочным соком происходит в нижней части желудка
. Небольшое количество желудочного сока присутствует там всегда, но для расщепления большого количества пищи организм вырабатывает дополнительный объём желудочного сока. У желудочного сока сложных химический состав, основу которого составляют
соляная кислота
и пищеварительные ферменты, которые расщепляют белок. Сама по себе соляная кислота опасна и для стенок желудка, но их покрывает большое количество слизи, которая не даёт кислоте воздействовать на стенки.
Смешанная с желудочным соком пища переходит в двенадцатиперстную кишку
, где под воздействием ферментов тонкого кишечника и сока поджелудочной железы перевариваются белки, жиры и углеводы. Дополнительная обработка происходит желчью, которая в остальное время накапливается в
желчном пузыре
, а во время еды порционно впрыскивается в двенадцатиперстную кишку. Желчные кислоты преимущественно воздействуют на жир, разбивая его на мелкие частицы, которые легко расщепляются ферментами.
Полученные в процессе расщепления пищи вещества всасываются через стенки тонкого кишечника в кровь
и разносятся по всему организму. Частицы, которые переварить не удалось, перемещаются в толстый кишечник. В толстом кишечнике из непереваренных частиц всасывается вода и оставшиеся витамины, которые могут быть полезны для организма. Отходы же организм считает бесполезными и непригодными для дальнейшего использования, поэтому из них формируются
каловые массы
, которые попадают в прямую кишку и естественным образом выводятся. Считается, что выведение скопившихся каловых масс должно происходить ежедневно, таким образом организм самоочищается.
Библиотека
С.Т. Метельский доктор биологических наук, главный научный сотрудник ГУ НИИ Общей патологии и патофизиологии РАМН; контактная информация для переписки ; Москва, 125315, Балтийская 8.
Цель лекции. Рассмотреть физиологические механизмы всасывания в желудочнокишечном тракте (ЖКТ). Основные положения. В литературе данные вопросы освещаются с трех сторон: 1) топография всасывания веществ в различных отделах ЖКТ – желудок, двенадцатиперстная кишка, тощая, подвздошная и толстая кишка; 2) основные функции энтероцитов; 3) основные механизмы всасывания в кишечнике. Рассмотрено 7 основных механизмов всасывания веществ в кишечнике. Заключение. Из всего ЖКТ тощая и подвздошная кишка характеризуются самым широким спектром всасывания различных соединений. Понимание физиологических механизмов всасывания в тонкой кишке имеет большое значение в практической гастроэнтерологии.
Ключевые слова:
Всасывание, ионы, натрий, нутриенты, желудочнокишечный тракт, простая диффузия, облегченная диффузия, осмос, фильтрация, околоклеточный транспорт, активный транспорт, сопряженный транспорт, вторично-энергизованный транспорт, эндоцитоз, трансцитоз, Р-гликопротеин.
Основные механизмы всасывания
Стенка тонкой кишки, где происходит наиболее интенсивное всасывание основных питательных веществ, или нутриентов, состоит из слизистой оболочки (ворсинки и кишечные железы), подслизистой (где находятся кровеносные и лимфатические сосуды), мышечного слоя (где находятся нервные волокна) и серозной оболочки. Слизистую оболочку образуют ворсинки, покрытые однослойным эпителием с вкраплением бокаловидных клеток; внутри ворсинок проходят лимфатические сосуды, капиллярная сеть, нервные волокна. Характерная особенность транспорта веществ в эпителии тонкой кишки заключается в том, что он осуществляется через монослой клеток. Всасывающая поверхность такого монослоя существенно увеличена за счет микроворсинок. Энтероциты тонкой кишки, где в основном происходит всасывание питательных веществ (нутриентов), асимметричны, или поляризованы: апикальная и базальная мембраны отличаются друг от друга по проницаемости, набору ферментов, величине разности электрических потенциалов и выполняют неодинаковые транспортные функции. Ионы попадают в клетки с помощью ионных каналов или специальных молекулярных машин – насосов. Энергия для входа ионов в клетку обычно обеспечивается через плазматическую мембрану электрохимическим градиентом натрия, генерируемым и поддерживаемым благодаря функционированию Na+, K+-АТФазного насоса. Этот насос локализован на базолатеральной мембране, обращенной в кровь (рис. 1). Энергия, которую можно получить из электрохимического потенциала Na+ (разность ионных концентраций + разность электрических потенциалов на мембране) и которая выделяется, когда входящий натрий пересекает плазматическую мембрану, может быть использована другими транспортными системами. Следовательно, Na+, K+-АТФазный насос выполняет две важные функции – откачивает из клеток Na+ и генерирует электрохимический градиент, обеспечивающий энергией механизмы входа растворенных веществ. Термином «всасывание» обозначают совокупность процессов, обеспечивающих перенос веществ из просвета кишки через слой эпителия в кровь и лимфу; секреция – это движение в противоположном направлении.
Всасывание в различных отделах желудочно-кишечного тракта
В желудке всасывается 20% потребленного алкоголя, а также короткоцепочечные жирные кислоты. В двенадцатиперстной кишке – витамины A и B1, железо, кальций, глицерин, жирные кислоты, моноглицериды, аминокислоты, моно- и дисахариды. В тощей кишке – глюкоза, галактоза, аминокислоты и дипептиды, глицерин и жирные кислоты, моно- и диглицериды, медь, цинк, калий, кальций, магний, фосфор, йод, железо, жирорастворимые витамины D, E и K, значительная часть комплекса витаминов В, витамин С и остатки алкоголя. В подвздошной кишке – дисахариды, натрий, калий, хлорид, кальций, магний, фосфор, йод, витамины C, D, E, K, B1, B2, B6, B12 и большая часть воды. В толстой кишке – натрий, калий, вода, газы, некоторые жирные кислоты, образовавшиеся при метаболизме растительных волокон и непереваренного крахмала, витамины, синтезированные бактериями, – биотин (витамин Н) и витамин К.
Основные функции энтероцитов
К основным функциям энтероцитов относят следующие. Поглощение ионов, включая натрий, кальций, магний и железо, – по механизму их активного транспорта. Поглощение воды (трансклеточно или околоклеточно), – происходит за счет осмотического градиента, образованного и поддерживаемого ионными насосами, в частности Nа+, К+-АТФазой. Поглощение сахаров. Ферменты (полисахаридазы и дисахаридазы), локализованные в гликокаликсе, расщепляют большие молекулы сахара на более мелкие, которые затем всасываются. Глюкоза переносится через апикальную мембрану энтероцита с помощью Nа+-зависимого транспортера глюкозы. Глюкоза перемещается через цитозоль (цитоплазму) и выходит из энтероцита через базолатеральную мембрану (в капиллярную систему) с помощью транспортера GLUT-2. Галактоза переносится с помощью такой же транспортной системы. Фруктоза пересекает апикальную мембрану энтероцита, используя транспортер GLUT-5. Поглощение пептидов и аминокислот. В гликокаликсе ферменты пептидазы расщепляют белки до аминокислот и небольших пептидов. Энтеропептидазы активируют превращение панкреатического трипсиногена в трипсин, который, в свою очередь, активирует другие панкреатические зимогены. Поглощение липидов. Липиды – триглицериды и фосфолипиды – расщепляются и пассивно диффундируют в энтероциты, а свободные и этерифицированные стерины всасываются в составе смешанных мицелл (см. ниже). Липидные молекулы небольшого размера транспортируются в капилляры кишечника через плотные контакты. Попавшие в энтероцит стерины, включая холестерин, этерифицируются под действием фермента ацил-КоА: холестерин ацилтрансферазы (АХАТ) вместе с ресинтезированными триглицеридами, фосфолипидами и аполипопротеинами включается в состав хиломикронов, которые секретируются в лимфу и затем в кровоток. Ресорбция неконъюгированных солей желчи. Желчь, попавшая в просвет кишки и не использованная в процессе эмульгации липидов, подвергается обратному всасыванию в подвздошной кишке. Процесс известен как энтерогепатическая циркуляция. Поглощение витаминов. Для всасывания витаминов используются, как правило, механизмы всасывания других веществ. Особый механизм существует для всасывания витамина В12 (см. ниже). Секреция иммуноглобулинов. IgA из плазматических клеток слизистой оболочки с помощью механизма рецепторопосредованного эндоцитоза поглощается через базолатеральную поверхность и в виде комплекса рецептор–IgA высвобождается в просвет кишечника. Наличие рецептора придает молекуле дополнительную стабильность.
Основные механизмы всасывания соединений в кишечнике
На рис. 2 представлены основные механизмы всасывания веществ. Рассмотрим указанные механизмы более подробно. Пресистемный метаболизм, или метаболизм (эффект) первого прохождения кишечной стенки. Явление, при котором концентрация вещества перед попаданием в кровеносное русло резко снижается. При этом если введенное вещество является субстратом P-гликопротеина (см. ниже), его молекулы могут неоднократно поступать в энтероциты и выводиться из него, в результате чего вероятность метаболизма данного соединения в энтероцитах возрастает. P-гликопротеин в большом количестве экспрессирован в нормальных клетках, выстилающих кишечник, проксимальные канальцы почек, капилляры гематоэнцефалического барьера, и в клетках печени. Транспортеры типа P-гликопротеина являются членами надсемейства самого большого и наиболее древнего семейства транспортеров, представленного в организмах от прокариотов до человека. Это трансмембранные белки, функцией которых является транспорт широкого спектра
веществ через вне- и внутриклеточные мембраны, включая продукты метаболизма, липиды и лекарственные вещества. Такие белки классифицируются как АТФ-связывающие кассетные транспортеры (АВС-транспортеры) на основании их последовательности и устройства АТФ-связывающего домена. АВС-транспортеры влияют на невосприимчивость к лекарственным средствам опухолей, кистозного фиброза, устойчивость бактерий ко многим лекарственным препаратам и некоторые другие явления. Пассивный перенос веществ через эпителиальный пласт. Пассивный транспорт веществ через монослой энтероцитов протекает без затрат свободной энергии и может осуществляться или трансклеточным, или околоклеточным путем. К этому виду транспорта относятся простая диффузия (рис. 3), осмос (рис. 4) и фильтрация (рис. 5). Движущей силой диффузии молекул растворенного вещества является его концентрационный градиент. Зависимость скорости диффузии вещества от его концентрации линейна.Диффузия – это наименее специфичный и самый, по-видимому, медленный процесс транспорта. При осмосе, представляющем собой разновидность диффузионного переноса, происходит перемещение в соответствии с концентрационным градиентом свободных (не связанных с веществом) молекул растворителя (воды).
Процесс фильтрации заключается в переносе раствора через пористую К пассивному переносу веществ через мембраны относится также облегченная диффузия – перенос веществ с помощью транспортеров, т. е. специальных каналов или пор (рис. 6). Облеченная диффузия обладает специфичностью к субстрату. Зависимость скорости процесса при достаточно высоких концентрациях переносимого вещества выходит на насыщение, поскольку перенос очередной молекулы тормозится ожиданием, когда транспортер освободится от переноса предыдущей. Околоклеточный транспорт – это транспорт соединений между клетками через область плотных контактов (рис. 7), он не требует затрат энергии. Структура и проницаемость плотных контактов тонкой кишки в настоящее время активно исследуются и дискутируются. Например, известно, что за селективность плотных контактов для натрия отвечает клаудин-2. Другая возможность состоит в том, что межклеточный перенос осуществляется благодаря некоторым дефектам в эпителиальном пласте. Такое движение может происходить по межклеточным областям в тех местах, где происходит слущивание отдельных клеток. Такой путь может оказаться воротами для проникновения чужеродных макромолекул прямо в кровь или в тканевые жидкости. Эндоцитоз, экзоцитоз, рецепторопосредованный транспорт (рис. и трансцитоз. Эндоцитоз – это везикулярный захват жидкости, макромолекул или небольших частиц в клетку. Существуют три механизма эндоцитоза: пиноцитоз (от греческих слов «пить» и «клетка»), фагоцитоз (от греческих слов «поедать» и «клетка») и рецепторопосредованный эндоцитоз или клатрин-зависимый эндоцитоз. Нарушения указанного механизма приводят к развитию определенных заболеваний. Многие кишечные токсины, в частности холерный, попадают в энтероциты именно по этому механизму. При пиноцитозе гибкая плазматическая мембрана образует впячивание (инвагинация) в виде ямки. Такая ямка заполняется жидкостью из внешней среды. Затем она отшнуровывается от мембраны и в виде везикулы продвигается в цитоплазму, где ее мембранные стенки перевариваются, а содержимое высвобождается. Благодаря такому процессу клетки могут поглощать как крупные молекулы, так и различные ионы, не способные проникнуть через мембрану самостоятельно. Пиноцитоз часто наблюдается в клетках, функция которых связана со всасыванием. Это чрезвычайно интенсивный процесс: в некоторых клетках 100% плазматической мембраны поглощается и восстанавливается всего за час. При фагоцитозе (явление открыто русским ученым И.И. Мечниковым в 1882 г.) выросты цитоплазмы захватывают капельки жидкости, содержащие какие-либо плотные (живые или неживые) частицы (до 0,5 мкм), и втягивают их в толщу цитоплазмы, где гидролизующие ферменты переваривают поглощенный материал, разрушая его до таких фрагментов, которые могут быть усвоены клеткой. Фагоцитоз осуществляется с помощью клатрин-независимого актин-зависимого механизма; это – основной механизм защиты организма хозяина от микроорганизмов. Фагоцитоз поврежденных или постаревших клеток необходим для обновления тканей и заживления ран. При рецепторопосредованном эндоцитозе (см. рис. для переноса молекул используются специфические поверхностные рецепторы. Этот механизм обладает следующими свойствами – специфичность, способность к концентрированию лиганда на поверхности клетки, рефрактерность. Если специфический рецептор после связывания лиганда и его поглощения не возвращается на мембрану, клетка становится рефрактерной к данному лиганду. С помощью эндоцитозного везикулярного механизма всасываются как высокомолекулярные соединения типа витамина В12, ферритина и гемоглобина, так и низкомолекулярные – кальций, железо и др. Роль эндоцитоза особенно велика в раннем постнатальном периоде. У взрослого человека пиноцитозный тип всасывания существенного значения в обеспечении организма питательными веществами, по-видимому, не имеет. Трансцитоз – это механизм, посредством которого молекулы, пришедшие в клетку извне, могут доставляться к различным компартментам внутри клетки или даже перемещаться от одного слоя клеток к другому. Одним из хорошо изученных примеров трансцитоза является проникновение некоторых материнских иммуноглобулинов через клетки кишечного эпителия новорожденного. Материнские антитела с молоком попадают в организм ребенка. Антитела, связанные с соответствующими рецепторами, сортируются в ранние эндосомы клеток пищеварительного тракта, затем с помощью других пузырьков проходят сквозь эпителиальную клетку и сливаются с плазматической мембраной на базолатеральной поверхности. Здесь лиганды освобождаются от рецепторов. Затем иммуноглобулины собираются в лимфатические сосуды и попадают в кровоток новорожденного. Рассмотрение механизмов всасывания с точки зрения отдельных групп веществ и соединений будут представлены в одном из следующих номеров журнала. Работа поддержана грантом РФФИ 09-04-01698
Список литературы:
1. Метельский С.Т. Транспортные процессы и мембранное пищеварение в слизистой оболочке тонкой кишки. Электрофизиологическая модель. – М.: Анахарсис, 2007. – 272 с. 2. Общий курс физиологии человека и животных. – Кн. 2. Физиология висцеральных систем / Под ред. А.Д. Ноздрачева. – М.: Высшая школа, 1991. – С. 356–404. 3. Membrane digestion. New facts and concepts / Ed. A.M. Ugolev. – M.: MIR Publishers, 1989. – 288 p. 4. Tansey T., Christie D.A., Tansey E.M. Intestinal absorption. – London: Wellcome Trust, 2000. – 81 p
статья взята с сайта Русского журнала Гастроэнтерологии, Гепатологии, Колопроктологии
статья размещена по адресу:
https://www.gastro-j.ru/article/33-fiziologicheskie-mehanizmyi-vsasyivaniya-v-nbsp-kishechnike/show/full/
Что может вызвать перебои в работе ЖКТ?
Общее самочувствие человека во многом зависит от работы его желудочно-кишечного тракта
, нарушать эту работу могут различные заболевания желудка и желчного пузыря, но навредить себе может и сам человек. Частыми “рукотворными” причинами
нарушений в работе желудка
становятся:
- курение и злоупотребление алкоголем;
- несбалансированные диеты;
- пищевые отравления, вызванные некачественной едой.
Нужно помнить, что пищеварение
— это сложный многоэтапный процесс, поэтому важно, чтобы он не нарушался ни на одном из этапов, от полости рта до прямой кишки. Желудочно-кишечный тракт обеспечивает расщепление пищи до простейших соединений, которые организм в дальнейшем использует для построения новых тканей и для получения энергии, без этого развитие и жизнедеятельность организма невозможны.
Углеводы
присутствуют в растительной пище в основном в виде крахмала. В процессе пищеварения он превращается в глюкозу, которая может запасаться в виде полимера – гликогена – и использоваться организмом. Молекула крахмала – очень крупный полимер, образованный множеством молекул глюкозы. В сыром виде крахмал заключен в гранулы, которые должны быть разрушены, чтобы он смог превратиться в глюкозу. Обработка и приготовление пищи приводят к разрушению части крахмальных гранул.
Также по теме:
АППЕТИТ
Некоторые пищевые продукты содержат углеводы в форме дисахаридов. Эти сравнительно простые сахара, в частности сахароза (тростниковый сахар) и лактоза (молочный сахар), в процессе пищеварения превращаются в еще более простые соединения – моносахариды. Последние не нуждаются в переваривании.